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TL ; DR

SceneDINO is unsupervised and infers 3D geometry and expressive features from a sin-

gle image in a feed-forward manner, using multi-view self-supervision. Distilling and

clustering features lead to unsupervised semantic scene completion predictions.
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Introduction

Unsupervised Semantic Scene Completion aims to estimate the dense 3D geometry of a

scene and partition the scene into semantically meaningful regions from a single image with-

out any form of human supervision.

Motivation:

Mitigate limitations of human-labeled 3D data (e. g., high cost, inherent bias, etc.)

Omit the need for costly and complex depth sensors (e. g., LiDAR)

Provide a foundation for approaching 3D scene understanding tasks using labels

Related work:

Most existing approaches use significant geometric and semantic supervision [5]

Some approaches only utilize 2D semantic supervision (e. g., S4C [4])

To the best of our knowledge, no existing fully unsupervised SSC approach

No feed-forward approach for estimating general 3D features from a single image

Goal: Propose the first fully unsupervised semantic scene completion (SSC) approach.
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Method

SceneDINO’s unsupervised training comprises two stages:

(1) Learning a feed-forward 3D feature field grounded in DINO [1] features

(2) Distilling and clustering the 3D feature field into unsupervised SSC predictions

Stage 1: Feature-field training

SceneDINO 3D inference

2D encoder-decoder ξ predicts dense embeddings E from image I0

MLP φ estimates density σxi
and features fxi

at 3D position xi as

(σxi
, fxi

) = φ(eu, γ(xi)),

with the interpolated embedding eu and the positional encoding γ
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Multi-view self-supervision

SceneDINO is trained using multi-view images, (unsupervised)

camera poses, and 2D DINO target features

Single image fed into SceneDINO to predict a feature field

Target views are reconstructed from the feature field using

differentiable volume rendering and color sampling [7]

Image/feature reconstruction and smoothness loss used

Learned downsampler accounts for low target-feature resolution [2]

Stage 2: Unsupervised SSC
3D feature sampling

Intuition: Sample semantically rich 3D features and capture

different semantic concepts.

Sample center point Xi from all visible surface points

Sample occupied points within the radius r around Xi

to construct feature batch fX

Repeat n-times: sample a new center point sufficiently

far from existing center points
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Feature distillation and clustering

Given a feature batch fX, we sample random

and kNN feature batches from the buffer

Contrastive loss [3] amplifies feature

dis/similarities and reduces feature space by

fX ⇔ fX self-correlation

fX ⇔ fYkrand
random correlation

fX ⇔ fYkNN
kNN correlation

Distilled features h(fX) clustered using k-means

Results

Experiment setup: We train SceneDINO using on KITTI-360 (train). Next, we learn an

unsupervised segmentation head by distilling and clustering SceneDINO’s feature field.

Hungarian matching is used to align pseudo semantics with the ground truth for validation.

Input image
SceneDINO (Ours) S4C + STEGO

Ground truth
Feature field SSC prediction SSC prediction

Road Sidewalk Building Fence Pole Other Obj. Traffic Sign Vegetation Terrain Person Car Other V. Motorcycle Bicycle

Table 1. SSCBench-KITTI-360 results. Semantic results using

mIoU, and geometric results using IoU, Precision, and Recall

(all in %, ↑) on SSCBench-KITTI-360 test.

Method S4C [4] + STEGO [3] SceneDINO (Ours) S4C [4]

Supervision Unsupervised 2D supervision

Range 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m

Semantic validation

mIoU 10.53 9.26 6.60 10.76 10.01 8.00 16.94 13.94 10.19

Geometric validation

IoU 49.32 41.08 36.39 49.54 42.27 37.60 54.64 45.57 39.35

Precision 54.04 46.23 41.91 53.27 46.10 41.59 59.75 50.34 43.59

Recall 84.95 78.69 73.43 87.61 83.59 79.67 86.47 82.79 80.16

Table 2. Linear probing SceneDINO using

different target features, mIoU (in %, ↑).
Probing approach Target features mIoU

DINO [1] 9.34
Linear

DINOv2 [6] 10.57

S4C (full training) n/a 10.19

Table 3. Multi-view consistency results on

RE10K using L1 (↓), L2 (↓), and Cos-Sim (↑).
Method L1 L2 Cos-Sim

DINOv2 [6] 14.20 0.66 0.75

FiT3D [8] 5.67 0.27 0.95

SceneDINO (w/ DINOv2) 4.87 0.22 0.97

Table 4. SceneDINO analysis on SSCBench-KITTI-360 test, using mIoU (in %, ↑) and 51.2m range.

(a) Training components ablation

∆ mIoU mIoU Configuration

-1.18 6.82 No downsampler (bilinear up. + aug.)
-0.74 7.26 No pos. enc. decomposition
-0.12 7.88 w/ estimated ORB-SLAM3 poses

— 8.00 Full framework (SceneDINO)
+1.08 9.08 DINOv2 target features (vs. DINO)

(b) Feature distillation analysis

∆ mIoU mIoU Configuration

-1.61 6.39 No distillation
-1.35 6.65 No kNN-correlation loss (λkNN = 0)
-0.97 7.03 No neighborhood sampling
-0.47 7.53 5-crop sampling [3] (instead 3D sampling)

— 8.00 Full framework (SceneDINO)

Conclusion

SceneDINO effectively estimates 3D geometry and lifts self-supervised DINO

features using multi-view self-supervision

Distilling and clustering SceneDINO’s feature field in 3D leads to state-of-the-art

accuracy in unsupervised semantic scene completion and 2D semantic segmentation

SceneDINO offers multi-view consistent features and demonstrates strong domain

generalization, linear probing, and 2D unsupervised semantic segmentation results
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