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Figure 1. ReCoVEr. We propose a method to remove cost volumes from optical flow estimators during training, and thereby, we are able
to create fast and accurate optical flow estimators with a significantly reduced memory footprint. Our most accurate model, ReCoVEr-CX,
reaches state-of-the-art accuracy while being more efficient w.r.t. inference and memory than SEA-RAFT [52]. Our most efficient model,
ReCoVEr-MN, predicts sharper motion boundaries compared to the popular PWC-Net [47, 48], while having comparable efficiency.

Abstract

Cost volumes are used in every modern optical flow estima-
tor, but due to their computational and space complexity,
they are often a limiting factor regarding both processing
speed and the resolution of input frames. Motivated by our
empirical observation that cost volumes lose their impor-
tance once all other network parts of, e.g., a RAFT-based
pipeline have been sufficiently trained, we introduce a train-
ing strategy that allows removing the cost volume from opti-
cal flow estimators throughout training. This leads to signif-
icantly improved inference speed and reduced memory re-
quirements. Using our training strategy, we create three dif-
ferent models covering different compute budgets. Our most
accurate model reaches state-of-the-art accuracy while be-
ing 1.2x faster and having a 6x lower memory footprint
than comparable models; our fastest model is capable of
processing Full HD frames at 20 FPS using only 500 MB
of GPU memory.

1. Introduction

The task of optical flow estimation is to compute the ap-
parent 2D motion between two consecutive frames for each
pixel. Optical flow is a core part of many downstream tasks
such as video inpainting [11, 27, 58, 62], video frame inter-
polation [6, 37, 43, 60], and object tracking [59].

Since optical flow essentially amounts to a 2D search
problem [55] for every pixel, it is very expensive to compute
due to the quadratic nature of the problem. Recent meth-
ods for optical flow prediction are usually based on deep
learning. However, they require a part of the network to
specialize in computing similarities across time. This part
is often realized using non-learnable layers that calculate
the similarity of the pixels between frames. These layers
are often referred to as ‘cost volumes,” ‘correlation layers,’
or, in the context of transformer-based architectures, ‘cross-
attention.” All these layer types have in common that they
measure the similarity between pixels by calculating the co-
sine similarity, or a closely related measure, between every
pixel of one input frame to candidate matching pixels of
the other. They all share the problem of quadratic growth
in computational and space complexity with input resolu-
tion. Due to these layers using very similar computations,
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we mainly refer to them as cost volumes in this work.

The recent SEA-RAFT approach [52] achieves state-of-
the-art accuracy while being relatively efficient. Still, the
cost volume is responsible for more than half of the com-
putations, as visualized in Fig. 2, significantly dominating
the computational cost. The cost volume also heavily influ-
ences and limits the maximum input resolution processable
by current networks. The memory requirements of many
methods increase so rapidly that even processing common
Full HD (1920 x 1080) frames can be problematic due to
limited memory, as just the cost volume already requires
4GB at this resolution, growing to 62 GB when the res-
olution is doubled. Being able to remove or replace cost
volumes is, therefore, a promising direction to significantly
improve the efficiency of a wide range of current optical
flow estimators.

Inspired by early research on this topic [9, 21], in this
work, we analyze the role and benefit of cost volumes for
the overall prediction error. Based on our empirical ob-
servation that optical flow estimators are less dependent on
their cost volume after training if they also have a context
encoder for an initial prediction of the flow, we introduce a
specific training strategy to adapt optical flow networks dur-
ing training such that the cost volume is no longer needed at
inference time. We propose three different models based on
modified RAFT-like [50] architectures, utilizing their two
parallel branches: One branch computes features with a cost
volume, while the other encodes context information and
makes an initial optical flow prediction using an architec-
ture without a cost volume (or similar). Together with our
training strategy, we are able to remove the necessity of the
cost volume completely during training. Our modified net-
works reach competitive accuracies, and our most powerful
model even reaches state-of-the-art accuracies while being
significantly faster in inference compared to previous mod-
els with comparable accuracies.

2. Related Work

Optical flow estimation. Many different methods for op-
tical flow estimation have been proposed over the years.
Earlier methods often formulated optimization problems
that were (approximately) solved to predict optical flow [3,
14, 31, 39]. FlowNet [9] was the first deep learning-based
method that reached similar accuracies to classical methods
by utilizing CNNs and correlation layers. Following the
success of FlowNet, many different CNN-based methods
like FlowNet2 [21], PWC-Net [47, 48], and SpyNet [41]
were proposed. All of these methods rely on the computa-
tion of some type of matching score in the form of either
a correlation layer, cost volume, warping, or a combination
of the aforementioned methods to determine the matching
compatibility of features corresponding to pixels in both in-
put frames. Early research on the FlowNet-S architecture
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Figure 2. Analysis of the computational expense. Cumulative
number of floating point operations (FLOPS) required for a single
optical flow prediction using SEA-RAFT-M [52] for various input
resolutions. The cost volume of SEA-RAFT is part of the feature
network. In this work, we demonstrate a method to remove the
feature network during training, thereby eliminating a major part
of the required compute operations at inference time.

[9] showed that CNNs without correlation layers are less
accurate. We revisit this issue here.

Following the general trend of using vision transform-
ers [10] in computer vision, many transformer-based meth-
ods like FlowFormer [17], CroCo-Flow [53], and Mem-
Flow [7] utilize transformers. Still, notably, none of these
approaches uses plain vision transformers, containing only
self-attentions, but rather include some custom layers, like
cost volumes or cross-attention. In contrast to other com-
puter vision tasks, recent papers demonstrated that CNNs
can still outperform ViTs for optical flow estimation while
also being more efficient [8, 52].

Cost volumes. FlowNet [9] introduced the concept of a
correlation layer in the context of neural networks, where
the similarity between a feature and its neighbors from one
frame and all features of the other frame are computed.
The computational complexity for calculating this layer is
O(h?w?), where h and w refer to the height and width
of the feature map, respectively. Since this layer is very
expensive to compute at higher resolutions, FlowNet does
limit the maximum displacement where the correlations are
calculated to a fixed distance D, reducing the complexity
to O(D?hw). The disadvantage of this is that larger mo-
tions cannot be captured anymore. To overcome the lim-
ited motion range to a certain degree, PWC-Net [47, 48]
and other methods [18, 19, 41] utilize image pyramids for
a coarse-to-fine estimation where the flow is first estimated
at a very low resolution and further upsampled and refined
until the target resolution is reached. This allows to capture
large motions at lower resolutions, where the correspond-
ing pixel displacements are smaller, even when limiting the
maximum displacements considered. RAFT [50] addresses
the limitation of motion ranges by introducing a cost vol-
ume computed at multiple resolutions without any displace-



ment range limitations. Instead of limiting the displacement
range, RAFT limited the maximum resolution of the cost
volume to 1/8 of the input frame resolutions, reducing the
computational complexity enough to compute a global cost
volume for the full feature map, though at a smaller fea-
ture resolution. The multi-scale cost volume is then sam-
pled by a recurrent module that iteratively refines the flow
prediction. The idea of globally matching the pixels was
adapted and improved by multiple methods like GMA [25],
Flow1D [55], FlowFormer [17], CRAFT [46], and SEA-
RAFT [52]. The idea was also adopted by ViT-based [10]
approaches, where cross-attention is used to compute simi-
lar features as a cost volume [53, 56, 57].

Efficient cost volumes. Since cost volumes play a crit-
ical role in the overall accuracy of optical flow estimators
while also using a significant amount of compute, multi-
ple methods have been introduced to simplify the calcu-
lations in more sophisticated ways than the displacement
range limitation used in earlier works. Jiang et al. [26] intro-
duced the concept of sparse cost volumes, where a strategy
is formulated to identify the top-k best matching pixels from
the other frame for each pixel and then only calculating the
matching cost for these matches. Flow1D [55] introduced a
decomposition of a cost volume into two lower-dimensional
cost volumes and, therefore, approximated the solution of
the 2D matching problem of optical flow by solving two
1D matching problems, allowing the calculation of optical
flow between high-resolution input frames. As an alter-
native, HCVFlow [61] proposed the calculation of hybrid
cost volumes that combine the top-k matching idea of Jiang
et al. [26] with the decomposition idea of Flow1D. Instead
of pre-calculating the entire cost volume, it is also possi-
ble to reduce the memory requirements of cost volumes by
on-demand calculation of individual entries of the cost vol-
ume [23, 24, 50]. While this approach reduces the memory
footprint, it often increases the inference time significantly
on commonly used accelerators. Recently, Briedis et al. [4]
proposed to combine sparse evaluations of the cost volumes
with specialized sampling strategies such that these calcu-
lations can be run more efficiently on common accelerators.

Efficient CNNs. Not only the efficiency of cost vol-
umes can be improved, but also the efficiency of CNNs.
Over the years, many efficient architectures were pro-
posed [15, 16, 20, 29, 34, 42, 49, 54]. The efficiency im-
provements in CNNs are often reached by modifying kernel
sizes [29, 54], utilizing downsampling [13, 29, 49, 54] or
dilated convolutions [34], and modified convolutional op-
erators [15, 16, 42]. We leverage this progress to realize
efficient but powerful context networks for computing the
initial optical flow.
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Figure 3. ReCoVEr architecture overview. Our method assumes
an architecture similar to RAFT [50] where the input frames are
processed by a context network to obtain an initial flow estimate
and context features, and in parallel, the inputs are processed by
the feature network, consisting of a feature extractor and a cost
volume. The outputs of both branches are then combined by the
refinement network to obtain the optical flow prediction. Our train-
ing strategy allows us to cut away the feature network during train-
ing (dotted path). This increases the computational and memory
efficiency of the entire optical flow estimator at inference.

3. Enhancing Optical Flow Estimators

Since the introduction of FlowNet [9] correlation or cost
volumes are an integral part of many optical flow estima-
tors. While in the original paper, the benefit of including
these volumes over a pipeline without them was not yet re-
ally obvious, the subsequent work, FlowNet2 [21], clearly
advocates for using them. However, cost volumes now
heavily dominate the computational cost, including time
and memory of an optical flow estimator, since their com-
plexity is O(h%w?) for frames of size I € R3*"*w_ But
since FlowNet, there have been multiple advancements in
the building blocks of neural networks, and more powerful
CNNSs have been developed [12, 29]. This raises the ques-
tion whether or in what form cost volumes are still needed
or whether there are more efficient solutions with the same
or even better accuracy.

3.1. Analysis of SOTA optical flow pipelines

We focus our analysis and proposed solution on the
RAFT [50] architecture, more precisely SEA-RAFT [52],
as it represents the current state of the art w.r.t. endpoint
error (EPE) while also being compute efficient. RAFT-
based optical flow estimators mainly consist of three build-
ing blocks: a feature network, a context network, and a re-
finement network, as illustrated in Figure 3. The feature net-
work extracts features from each input frame and calculates
a cost volume from these extracted features. In parallel to
the feature network, the input is also processed by a context
network, which usually only uses convolutional layers. In
the case of SEA-RAFT, the context network predicts an ini-
tial optical flow estimate as well as a feature map from the
concatenated input frames. The outputs of the feature and
context networks are then used as inputs for the refinement
network, which iteratively refines the initial flow estimate
by utilizing the cost volume and the additional features pre-
dicted by the context network to create the final optical flow
prediction. While the feature network and the context net-



work both produce information used for optical flow, they
do not interact with each other directly and can individually
be removed without breaking the network. However, while
the benefit of the context and refinement network has been
ablated, the feature network with the cost volume has been
treated as given. In the case of SEA-RAFT-M, the EPE on
the Spring dataset [33] improves by 0.62 from the initial to
the final prediction, but it remains unclear how big the con-
tributions of the cost volume are to this result, in addition to
just performing the refinement iterations.

We argue that the extra computation and memory needed
for the cost volumes is disproportionally high w.r.t. to the
rest of the framework. Figure 2 shows the FLOPS used for
each component, and even for very efficient methods like
SEA-RAFT, the computation of the cost volume takes 53 %
of compute at low input resolutions like 480 x 320 and 61 %
at higher resolutions like 1920 x 1080. Since the memory
complexity grows at least as fast as the compute, this also
leads to many methods being unable to even process Full
HD (1920 x 1080) frames on a GPU with 48GB of VRAM.

Based on the high computational cost of cost volumes for
an unclear impact on the accuracy, we conclude that having
a closer look at the role and importance of the cost volume
within the RAFT architecture is a promising direction to-
wards significantly more efficient optical flow estimators.

3.2. ReCoVEr

Our goal is to Remove Cost Volumes from optical flow
Estimators (ReCoVEr) while retaining the accuracy.

The naive approach, i.e. having no cost volume and only
using the context (here, a ResNet-based optical flow esti-
mator) and refinement network (here, a convolutional GRU
run for 4 refinement iterations), indeed, does lead to sig-
nificantly worse results (¢f. Tab. 1). Motivated by the ob-
servation of FlowNet2 [21] that just modifying datasets and
training schedules can lead to significant improvements, we
analyze various strategies of reducing the contribution of
the feature network during training. Specifically, we test (i)
the option of fading out the contribution of the cost volume
by adding a dropout layer between the feature and refine-
ment network with an increasing drop rate; (ii) removing
the entire feature network with the cost volume after a cer-
tain number of training steps (referred to as cut-off). As
we can see in Tab. 1, both strategies lead to similar results
but are significantly better than the refinement network that
never had access to the cost volume. On the one hand, this
empirically shows that the refinement module benefits from
having access to the features from the cost volume when it-
eratively refining the flow, but on the other hand, this also
hints that by just varying the training scheme, we can de-
crease the dependence of the refinement module on the cost
volume for inference drastically.

However, the current EPE of this preliminary attempt

Sintel (val.) Sori FLOPS
_ rin memo
Clean Final pring "

SEA-RAFT [52] (0.43) (0.58) 0.54 440T 8.21GB
no cost volume 0.93 1.06 0.86
fade-out 0.81 0.92 0.68 1.74T 0.93GB
cut-off 0.80 091 0.68

Table 1. Ablation of cost volume contributions. Comparison be-
tween the endpoint errors (EPE) on the Sintel validation set [5] and
the Spring training set [33] when training a ResNet-based optical
flow estimator without any cost volume compared to ResNet-based
estimator where the cost volume is slowly faded out by increasing
Dropout [45] to 100% over time, and one where the cost volume
is cut off after a fixed number of training iterations. For complete-
ness, we also show the accuracies achievable by an unmodified
SEA-RAFT model. However, given that it was also trained on the
Sintel validation set, we put these numbers in parentheses. The
FLOPS and memory reported refer to the fully trained networks in
inference mode on an input pair from the Spring dataset. Bold and
underlined values indicate the best and second best results.

is slightly worse than the original baseline, although be-
ing significantly faster (2.5x) and more memory efficient
(8.8%). In the following, we further improve the training
strategy and show that with the right choice of context net-
work and training strategy, the EPE can be further reduced,
leading to overall state-of-the-art results.

ReCoVEr training strategy. To benefit from the cost
volume during training but enable its removal during in-
ference, we propose the following training strategy. Based
on our analysis in Tab. I, we know that we can stop using
the cost volume by fading out or completely cutting off the
feature extraction branch after a certain number of train-
ing iterations, but not from the beginning. Therefore, we
start training all parts of our optical flow estimator without
any modifications to make sure that the training is stable
and useful weights are learned for each part of our network.
Since we have found no significant difference between fad-
ing out the cost volume compared to cutting it off at a fixed
step, ¢f. Tab. 1, we use the cut-off strategy and stop calculat-
ing the result of the feature network after a certain number
of training iterations; we remove the parts of the refinement
module that receive the cost volume as an input. Afterward,
we continue training the shrunk-down network until it fully
converges on the training dataset(s).

We mostly follow the training protocol of SEA-
RAFT [52], where each model is trained in multiple stages.
In the first stage, TartanAir [51], which consists of mostly
rigid motions, is used, followed by training on the rela-
tively simplistic motions and objects in FlyingChairs [9].
Afterwards, the network is trained on FlyingThings [32].
For the final training stage, a combined dataset is created,
denoted as TSKH, consisting of FlyingThings [32], the



Sintel (val.) Sintel (val.)
Cut-off Spring Context network ~ ———— Spring FLOPS memory
Clean Final Clean Final

Never 0.43) (0.58) 0.54 MobileNetV3-L 081 090 099 0.86T 0.49GB

- ResNet-34 080 091 0.68 1.74T  0.93GB
TartanAir 0.93 1.06 0.86 — e prp—
FlyingChairs 080 0.91 070 ConvNeXt-t 036 042 0.51 2.65T 1.24GB
FlyingThings 0.80 091 0.68 Table 3. Analysis of different backbones. A comparison of EPEs
TSKH 0.81 0.93 0.71

Table 2. Analysis of training strategy. Evaluation of the end-
point error (EPE) of a ResNet-based model after completing the
entire training schedule. The cost volume is removed starting at
the dataset mentioned in the “cut-off”” column. The “Never” row
denotes a model where the cost volume was never removed. Note
that the training split of Sintel is part of the training, while Spring
is not seen during training and, therefore, better shows the gener-
alization ability of each model.

FlowNet training split [9] of Sintel [5], KITTI [35, 36],
and HDIK [28]. We decided to use this training protocol
because it includes many different datasets, showcasing a
wide variety of motions. Ablation studies in RAFT [50] and
SEA-RAFT have already shown that each part of this train-
ing stage improves the accuracies of their resulting models.

As this training strategy involves changing the datasets
during training multiple times, a natural choice for the cut-
off point is between swapping out the training datasets. Ta-
ble 2 shows that by just varying the cut-off point, we can
influence the EPE on Spring by 0.18 pixels, and we con-
clude that it is best to remove the cost volume before the
training on FlyingThings starts.

ReCoVEr backbones. Until this point, we only eval-
vated the ResNet-34 context network proposed by SEA-
RAFT, but in principle, every neural network that is ca-
pable of processing input frames and regressing dense fea-
tures can be used as a context network. Currently, many
optical flow methods utilize smaller ResNets as context net-
works [22, 25, 50, 52] because they offer a good trade-off
between accuracy and compute complexity. Since we can
remove the cost volume (during finetuning and inference),
which is responsible for the largest amount of compute, this
allows for the usage of more complex networks like Conv-
NeXt [29] while still being faster than today’s methods.
Specifically, we explore three different architectures for
the context networks while keeping the feature and refine-
ment network as proposed by SEA-RAFT. All of our con-
text networks take stacked input frames as input and return
feature maps at 1/s of the input resolution. Our ReCoVEr-
RN model uses the first three residual blocks of a ResNet-
34 as the context network. Thereby, the resulting network
is equivalent to the SEA-RAFT-M architecture. Our sec-
ond model, ReCoVEr-CX, is based on a ConvNeXt-t [29]
where we replace the last two downsampling-convolutions

reached by different context networks shows that the ConvNeXt-
based network performs best on Sintel and Spring when all models
are trained on the same data. The accuracies of ResNet and Mo-
bileNetV3 are almost identical on Sintel. The FLOPS and memory
reported refer to an input frame resolution of 1920 x 1080.

by convolutions of the same kernel size with stride 1 to cre-
ate feature maps at the required spatial dimensions. The
third model, ReCoVEr-MN, utilizes a slightly modified ver-
sion of the MobileNetV3-L [15] encoder. We replaced the
stride of the 13 th block by 1 to prevent the encoder from
downsampling our features to 1/16 th of the input resolution.
As shown in Tab. 3, our three proposed models offer dif-
ferent trade-offs: ConvNeXt is known to be very accurate,
but expensive to compute [29], MobileNetV3 is a backbone
with a very small memory footprint to optimize it for mobile
devices, but compared to other CNNs its accuracy is lim-
ited [15], and ResNet generalizes very well across different
computer vision tasks and usually offers a good trade-off
between accuracy and computational efficiency [12].

4. Results

To evaluate the performance of our models in more de-
tail, we compare our networks against state-of-the-art meth-
ods like SEA-RAFT [52] and more specialized versions of
RAFT [50], like GMA [25] and GMFlow [56].

Training details. We use the mixture of Laplace loss func-
tion introduced by SEA-RAFT for all of our trainings and a
linear one-cycle learning rate scheduler [44] with 6k itera-
tions of warmup time and an AdamW optimizer [30]. For a
fair comparison, all of our trainings are done on 8 NVIDIA
RTX 6000 Ada (48 GB) GPUs for the exact same number of
iterations, and we do not utilize any form of early stopping
or model selection from the different states obtained during
the training. We always report the accuracies of the models
obtained after the last training step.

Evaluation details. Comparing the accuracies of exist-
ing optical flow methods in a comparable and fair setting
is tricky as training and evaluation datasets have changed
over time. Newer approaches, like SEA-RAFT, pre-train
on the rigid motion of the TartanAir dataset before train-
ing on more traditional methods as this was shown to im-
prove accuracies [52]. Further, datasets like Sintel [5] and
KITTI [35, 36] do not have an official validation split, and
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Figure 4. Comparison of the required number of floating point
operations (FLOPS) for representative optical flow estimators
and our models at various resolutions. Missing data points are
due to out-of-memory errors.
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refinement iterations in our models on the resulting accuracy on
every 20th training frame of Spring. In the case of O iterations,
the refinement network is not used, and the flow prediction of the
context network is upsampled and used as a prediction.
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Method Middlebury [2] Spring [33]
Clean Final

SEA-RAFT [52] 0.34 1.69 241 0.54

ReCoVEr-MN 0.60 2.88  3.03 0.99

ReCoVEr-RN 0.36 216 2.77 0.62

ReCoVEr-CX 0.33 1.71  2.46 0.51
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Figure 5. Trade-offs between runtime, memory usage, and accu-
racies for different models on Spring [33] in full resolution.

consequently, the validation splits used by different meth-
ods differ, making a fair comparison on these datasets im-
possible since some methods have seen the evaluation data
during training. To overcome this, we evaluate all methods
on the Spring dataset [33] without ever training any method
on this dataset. The Spring dataset also has additional anno-
tated regions in each frame with attributes like level of detail
or rigidity of motions, allowing for further insights. We use
the endpoint error (EPE) [1, 38] for evaluating accuracy.

We use a batch size of 1 and FP32 precision for measur-
ing runtime and memory allocations. We average the run-
time over 100 iterations for all runtime measurements and
perform 10 warmup iterations that are not part of the mea-
surements. The resolution reported in our figures is directly
used as input sizes for all methods without applying addi-
tional down- and upsampling strategies for a fairer compar-
ison of methods, as these kinds of strategies are not model-
specific and could be applied for every model. We show the
effects of using these strategies in the supplemental materi-
als.

We compare our proposed models to GMA [25], GM-
Flow [56], and SEA-RAFT [52], because all of them are

Table 4. Out-of-domain evaluations of EPE on datasets that were
not used during training without any finetuning.

extensions of RAFT where each method tackles a different
shortcoming of RAFT. To clearly show the improvement
of each of these methods over RAFT, we also included the
original RAFT [50] model. Additionally, we include PWC-
Net [47, 48] in our comparisons as it is very fast and mem-
ory efficient and, therefore, commonly used in downstream
tasks as a building block of other models.

4.1. Quantitative results

Analysis of refinement. Since the number of iterations in
the refinement network is a hyperparameter, we also eval-
uate different numbers of iterations, as shown in Fig. 6.
The best accuracy for all of our models is reached be-
tween 7 and 9 iterations on our subset of Spring. Since
the changes after 4 iterations are minor for all of our mod-
els except for ResNet, we use only 4 iterations for our Mo-
bileNetV3 and ConvNeXt-based models for all subsequent
experiments and 8 iterations for the ResNet-based model
because the runtime tends to increase linearly with the num-
ber of refinement iterations [52]. The number of refinement
iterations can be increased without retraining the model.

Computational comparison. We compare the computa-
tional requirements of our models to other representative
methods in Figs. 4 and 5. While the complexity of our
three models differs quite a lot, they still require fewer op-
erations than most other existing methods. Unsurprisingly,
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Method SRR & ¥ & & ¢ & & 8 X & ¢
PWC-Net [47,48] X X 2.31 2.27 10.84 2.13 11.28 2.10 4.45 1.83 3.16 15.87 43.72 1.25
RAFT [50] v X 0.66 0.61 9.66 0.54 6.55 024 491 0.18 285 10.83 161.19 8.00
GMFlow [56] v X | 0.65 061 893 054 599 041 3.04 036 136 8.28 100423 8.28
GMA [25] v X 0.55 0.50 11.35 0.45 5.97 0.20 4.13 0.16 1.82 10.33 381.21 13.29
SEA-RAFT[52] Vv Vv~ 0.54 0.50 8.76 040 7.25 0.31 2.90 0.20 0.95 10.56 169.72 8.22
ReCoVEr-MN v V| 0.99 0.93 14.36 0.82 9.48 0.54 5.57 0.28 1.95 21.96 50.16 0.49
ReCoVEr-RN v V| 0.62 059 948 049 777 034 3.60 0.18 1.24 13.78 65.03 0.93
ReCoVEr-CX v v/| 051 0.47 9.10 0.39 651 024 328 0.16 108 1080 14441 124

Table 5. Comparison of the EPE of different methods on the different annotated regions of the Spring training split. None of the methods
were fine-tuned on Spring, and all of them were at least trained on FlyingChairs and FlyingThings, but since the training schedules changed
over time, we marked the methods that were trained using additional data from TartanAir or Sintel. All evaluated methods received the
full-resolution frames as inputs without any resizing. All our models are faster (inference) and smaller than SEA-RAFT.

our ReCoVEr-CX model requires the most operations, fol-
lowed by ReCoVEr-RN and ReCoVEr-MN. As can be seen,
the number of computations for almost all existing methods
tends to rise very quickly. This is due to the growing size
of their cost volumes (cf. Sec. 4.1), and since our models
do not have any cost volumes after training, their growth
in complexity is less steep, which allows for higher resolu-
tion images being processed. The only model we evaluated
that requires fewer computations than any of our models is
PWC-Net. Its requirements are close to our fastest model,
ReCoVEr-MN, but as we show in Tab. 5 and Fig. 5, our
model is much more accurate at roughly the same cost. We
observe similar trends for the inference time and memory
requirements of the different models as for the number of
floating-point operations. Further breakdowns of the differ-
ent complexities can be found in the supplemental material.

Generalization capabilities. To quantify the general-
ization capabilities of our proposed methods, we evaluate
SEA-RAFT and our methods on three different datasets that
were not used during training. As shown in Tab. 4, we find
no significant differences between SEA-RAFT and our best
method regarding the achieved accuracies.

Comparison to other methods. When comparing our
models in Tab. 5 to other representative methods that were
proposed over the years, we find that our largest model,
ReCoVEr-CX, is the best or second-best model for al-
most all accuracy measures, and overall best regarding to-
tal EPE. When comparing the accuracy of ReCoVEr-CX
to SEA-RAFT for motions that are larger than 40 pixels,
we can see that our EPE is only 0.24 higher for these re-
gions, which equals less than 0.6 % of the entire motion
magnitude. This shows that even though our networks do
not have cost volumes anymore, modern convolutional net-
works are capable of having mostly the same accuracies for
small and large motions, which differs from findings in the

early works of FlowNet2 [21] and FlowNet [9], showing
the benefit of recent CNN innovations. While ReCoVEr-
MN and ReCoVEr-RN do not reach state-of-the-art perfor-
mance, they are competitive with existing models while be-
ing faster. E.g., ReCoVEr-RN has an accuracy that is very
similar to that of RAFT, while being 2.5x faster and us-
ing less than !/s th of the memory. ReCoVEr-MN is almost
as fast as PWC-Net but more than twice as accurate. Gen-
erally speaking, w.r.t. to comparable computational budget,
our ReCoVEr training strategy achieves much more accu-
rate flow predictions than existing methods.

4.2. Qualitative results

Quantitatively evaluating optical flow on natural frames
captured at high resolutions is impossible as no annotated,
high-resolution dataset is currently available. In Fig. 7,
we therefore qualitatively compare the predictions of SEA-
RAFT to the predictions of our models for two natural se-
quences from the DAVIS [40] dataset captured at a resolu-
tion of 1920 x 1080. We find that both architectures us-
ing ResNet as a context network, ReCoVEr-RN and SEA-
RAFT, have comparable prediction qualities and very simi-
lar failure cases where, e.g., the motion of the bike wheel is
predicted very similarly. In contrast, ReCoVEr-CX shows
much sharper motion boundaries and is better at separat-
ing moving foreground objects from the background mo-
tion, especially visible at the wheels and the clear separa-
tion of the foreground and background motion, while still
being faster and requiring less memory than SEA-RAFT.
The overall quality of ReCoVEr-MN prediction is notice-
ably lower than the others, but given the very low compute
requirements, the overall quality of the results is still good,
and when comparing it to the predictions of PWC-Net in
Fig. 1, ReCoVEr-MN shows an overall higher prediction
quality at comparably low runtimes.
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Figure 7. Qualitative comparison of our method compared to
SEA-RAFT on Full HD frames from the DAVIS dataset [40]. Note
that our models use only between 1/6 to 1/20th of the memory
required by SEA-RAFT and are 1.2 to 3.4 x faster.

Even though our models are only trained on frames up
to a resolution of 960 x 432, we find that our models gen-
eralize to much higher resolutions, as can be seen in Fig. 8
where we predict the optical flow on an input at a resolution
of 3840 x 2160 pixels. Similar to our findings for Fig. 7,
we observe the highest prediction quality for ReCoVEr-CX.
ReCoVEr-MN shows some significant shortcomings when
processing these high-resolution images, as can be seen by
the holes in the prediction where no foreground motion is
detected due to a lack of texture in that region.

4.3. Limitations

As shown in our quantitative and qualitative results, our
fastest architecture, ReCoVEr-MN, starts failing for larger
motions. The qualitative results show that ReCoVEr-MN in
this case either fails to detect motions entirely or predicts
motions going in the wrong direction. Further, the compu-
tational advantages of MobileNetV3 over ResNet start to di-
minish at high resolutions. Therefore, we conclude that the
ReCoVEr-MN architecture should only be used for lower-
resolution inputs in settings where a low memory footprint

inputs
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Figure 8. Qualitative result for the prediction on 4K frames from
the DAVIS dataset [40]. Overlaying the prediction with the frames
shows that the predictions are well-aligned with the input frames.
The motion overlay shows a blend between the prediction and in-
put frame where the color channel in LCh color space is taken
from the optical flow visualization while the other channels are
taken from the input frame.

is the most important criterion. Further, we only explore the
effect of replacing the context network and do not evaluate
the effect other refinement network architectures can have
on the performance. Figure 6 even shows that our refine-
ment yields barely any increase in accuracy for ReCoVEr-
CX and, therefore, removing the refinement module offers
possibilities for further improvements.

5. Conclusion

In this work, we have analyzed and re-evaluated the role of
cost volumes in optical flow estimators, taking into account
the progress made in modern convolution network back-
bones and the availability of current datasets. We found
that cost volumes are necessary initially during training, but
with the right training strategy, they are not needed anymore
during inference. To demonstrate optical flow methods
without cost volumes, we introduced a simple yet highly ef-
fective training strategy where the cost volume is removed
during the training process. We utilized this training strat-
egy to create three different models that can cover a wide
range of applications covering state-of-the-art accuracies,
low compute times, and low memory footprints.
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Removing Cost Volumes from Optical Flow Estimators

Supplementary Material

A.1. Complexity

In the main paper, we only refer to FLOPS as a measure
of complexity. However, a reduction of FLOPS does not
necessarily lead to a reduction in compute time on currently
available accelerators, mostly due to memory alignment is-
sues. Since we only remove entire parts of the networks and
do not introduce sparsity or similar, we find that the reduc-
tion in FLOPS is proportional to the reduction in runtime.
For completeness, we show the runtimes for different reso-
lutions in Fig. A.1.

Another limiting factor is often the amount of memory
required for a single prediction. We evaluate the memory
footprint of our method in Fig. A.2, and due to the missing
cost volumes, we find a significant reduction in memory
footprint. However, technically RAFT-style architectures
never require every value of the cost volume to be avail-
able at the same time since the refinement network can only
sample a certain number of values from the cost volume per
iteration. Therefore, the required values could be calculated
only when they are requested from the refinement module.
This was also noticed and implemented by Teed and Deng
in the original implementation of RAFT, but the disadvan-
tage of this approach is a significant slowdown in process-
ing speed, and therefore, we do not consider this approach
in our work.

A.2. Downsample-upsample strategies

Downsampling the inputs and bilinearly upsampling the re-
sulting optical flow is another method to reduce the memory
footprint and inference time, and is, e.g., applied by SEA-
RAFT on Full-HD frames to increase the computational ef-
ficiency for higher resolution inputs [52]. In our work, we
did not apply this orthogonal strategy as it can be applied
theoretically to all optical flow methods. Table A.l shows
that when evaluating on the Spring dataset, most meth-
ods achieve even higher accuracies using the downsample-
upsample strategy, but the results on Sintel and Monkaa
clearly show that the increase in accuracy is not persistent
between datasets.

A.3. Additional technical details

Refinement network. The refinement network is imple-
mented such that the sampling from the cost volume during
the refinement can return an all-zero tensor instead of actu-
ally sampling from the cost volume. This simplifies the im-
plementation of cutting away the feature network because
by returning only zeros, the weights of the first layer of the
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Figure A.1. Runtime of our methods and SEA-RAFT for different

input resolutions.
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Figure A.2. Memory requirements of our methods and SEA-
RAFT for different input resolutions.

refinement network that deal with this part of the input are
not used since all of them are multiplied by zero. Theoret-
ically, removing the affected weights from this layer com-
pletely would be possible. Still, this way of implementing
the process is much easier, and the number of calculations
needed to process the zero tensor is negligible compared to
all other computations necessary for the optical flow predic-
tion.

Training protocol. As described in Sec. 3.2, we mostly
follow the training protocol proposed by SEA-RAFT [52].
The only difference is the composition of the TSKH dataset,
where we do not include the validation split of Sintel. This
allows us to fairly evaluate our methods on parts of the Sin-
tel dataset for our analysis.

A.4. Qualitative examples

More qualitative examples, including samples from Sin-
tel [5], Spring [33], and natural images taken from
KITTT [35, 36] and DAVIS [40] can be found in Figs. A.3
and A 4.
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Table A.1. Effect of downsampling by a factor of 2x and bilinearly upsampling the resulting optical flow on different datasets. The time
and memory refer to input frames of size 1920 x 1080. For completeness, we also show the accuracies achievable by methods that were
also trained on the Sintel validation set, and we put these numbers in parentheses.

inputs SEA-RAFT [52] ReCoVEr-MN ReCoVEr-RN ReCoVEr-CX

Figure A.3. More qualitative examples on various frames taken from DAVIS [40], KITTI [35, 36], Sintel [5], and Spring [33].
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inputs SEA-RAFT [52] ReCoVEr-MN ReCoVEr-RN ReCoVEr-CX

Figure A.4. More qualitative examples on various frames taken from DAVIS [40], KITTI [35, 36], Sintel [5], and Spring [33].
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