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Introduction

Task: Unsupervised semantic segmentation (USS) aims to consistently discover and
categorize image regions in a given data domain without any labels.

Motivation:

= Can we directly use the potential of pre-trained self-supervised features instead
of learning a new representation on top?

» Large performance gap comparing supervised and unsupervised probing within
pre-trained self-supervised feature spaces suggests hidden potential.
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Figure 1. PriMaPs divide images into masks. Assigning a pseudo ID per mask leads to pseudo labels.
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Idea: Use principal components of self-supervised features to identify visual patterns
with high semantic correlation to decompose images into mask proposals. Construct
pseudo labels and directly optimize class prototypes for USS in the feature space.
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TL; DR

We present PriMaPs - Principal Mask Proposals - decomposing images into se-

mantically meaningful masks based on their feature representation. This enables
unsupervised semantic segmentation by fitting class prototypes to PriMaPs with
stochastic expectation-maximization.
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PriMaPs iteratively decompose images into class-agnostic mask proposals based
on self-supervised representations.
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PriMaPs-EM fits class prototypes by optimizing over two identically sized vector
sets using stochastic EM of a clustering objective guided by PriMaPs.
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Experiments: PriMaPs-EM provides modest but consistent improvements across all
settings. Qualitative results indicate improved local segmentation consistency.

Summary

= Lightweight mask proposals, leveraging intrinsic properties of the embedding
space provided by an off-the-shelf self-supervised learning approach.

= Pseudo labels based on the mask proposals, and a straightforward stochastic
expectation-maximization approach for boosting USS.

= Improved USS results across a wide range of self-supervised embeddings and
datasets as well as orthogonal to current SotA methods.
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