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Introduction

Task: Unsupervised semantic segmentation (USS) aims to consistently discover and

categorize image regions in a given data domain without any labels.

Motivation:

Can we directly use the potential of pre-trained self-supervised features instead

of learning a new representation on top?

Large performance gap comparing supervised and unsupervised probing within

pre-trained self-supervised feature spaces suggests hidden potential.
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Figure 1. PriMaPs divide images into masks. Assigning a pseudo ID per mask leads to pseudo labels.

Idea: Use principal components of self-supervised features to identify visual patterns

with high semantic correlation to decompose images into mask proposals. Construct

pseudo labels and directly optimize class prototypes for USS in the feature space.
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TL ; DR

We present PriMaPs – Principal Mask Proposals – decomposing images into se-

mantically meaningful masks based on their feature representation. This enables

unsupervised semantic segmentation by fitting class prototypes to PriMaPs with

stochastic expectation-maximization.

Method

PriMaPs iteratively decompose images into class-agnostic mask proposals based

on self-supervised representations.

With dense features f ∈ RC×H×W

for every mask proposal P :

1. Nearest neighbor feature f̃ of
first principal component v1

2. Cosine-distance similarity map:

M = (Mi,j)i,j ,whereMi,j =
(
f̃
)>
f̂:,i,j

3. Principal mask with ψ ∈ (0, 1):

P =
[
Mi,j > ψ · max

m,n
Mm,n

]
i,j
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Figure 2. PriMaPs pseudo label generation.

PriMaPs-EM fits class prototypes by optimizing over two identically sized vector

sets using stochastic EM of a clustering objective guided by PriMaPs.
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Figure 3. PriMaPs-EM architecture.

Initialize class prototypes θ with cosine-
distance batch-wise K-means loss:

LK-means(θT ) = −
∑
i,j

max
(
θ>
T f:,i,j

)
Further optimize with focal loss:

Lfocal(θS; y′) = −
∑
k,i,j

(1 − χk)2P ∗
k,i,j log(y′

k,i,j)

with y′
:,i,j = softmax(θ>

S f
′
:,i,j) ,

and class-wise confidenceχk

Results

Table 1. Comparison to existing unsupervised semantic

segmentation methods, using Accuracy and mean IoU (in %).

Method Backbone
Cityscapes COCO-Stuff Potsdam-3

Acc mIoU Acc mIoU Acc mIoU

Baseline [1] 61.4 15.8 34.2 9.5 56.6 33.6

+TransFGU [6] 77.9 16.8 52.7 17.5 – –

+ STEGO [2] – – 48.3 24.5 77.0 62.6

+ACSeg [3] – – – 16.4 – –

+HP [5] 80.1 18.4 57.2 24.6 – –

+PriMaPs-EM 81.2 19.3 46.5 16.4 62.5 39.0

+ SotA+PriMaPs-EM

DINO

ViT-S/8

76.3 19.2 57.8 25.1 78.4 64.2

Baseline [1] 49.2 15.5 38.8 15.7 66.1 49.4

+ STEGO [2] 73.2 21.0 56.9 28.2 – –

+HP [5] 79.5 18.4 – – 82.4 69.1

+PriMaPs-EM 59.6 17.6 48.4 21.9 80.5 66.9

+ SotA+PriMaPs-EM

DINO

ViT-B/8

78.6 21.6 57.9 29.7 83.3 71.0

Baseline [4] DINOv2 49.5 15.3 44.5 22.9 75.9 61.0

+PriMaPs-EM ViT-S/14 71.6 19.0 46.4 23.8 78.4 64.2

Baseline [4] DINOv2 36.1 14.9 35.0 17.9 82.4 69.9

+PriMaPs-EM ViT-B/14 82.8 21.2 52.6 23.6 83.1 71.0

Figure 4. Qualitative results for

DINO ViT-B/8.
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Experiments: PriMaPs-EM provides modest but consistent improvements across all

settings. Qualitative results indicate improved local segmentation consistency.

Summary

Lightweight mask proposals, leveraging intrinsic properties of the embedding

space provided by an off-the-shelf self-supervised learning approach.

Pseudo labels based on the mask proposals, and a straightforward stochastic

expectation-maximization approach for boosting USS.

Improved USS results across a wide range of self-supervised embeddings and

datasets as well as orthogonal to current SotA methods.
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