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EMAT, Efticient Masked Attention Transformer, processes high-
resolution correlation tokens, boosting few-shot classification and
segmentation, especially for small objects, while using at least four
times fewer parameters than existing methods. It supports N-way
K-shot tasks and outputs empty masks when no target is present.
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Figure 1. Qualitative comparison of CST*(previous SOTA) and EMAT.

Introduction

EMAT processes correlation features extracted with a frozen pre-
trained ViT-S [3] using a two-layer transformer with:

(1) A memory-efticient masked attention formulation,

(2) Alearnable downscaling strategy,
(3) Moditications for improved parameter efticiency.

Task-specitic heads then predict the multi-label classification
vector and the multi-class segmentation mask.
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Figure 3. FS-CS pipeline used by EMAT.

Results

~ew-shot classitication and segmentation (FS-CS) [2] focuses on
jointly performing multi-label classification and multi-class
segmentation using few annotated examples.

Motivation:
® S-Cand FS-S often co-occur in real-world applications.

® Applications such as medical imaging require precise small-
object analysis, yet the current SOTA in FS-CS, CST [ 1], performs
poorly on small objects.

® Most FS-S methods are limited to single-class (1-way)
segmentation, and the standard multi-class (N-way) evaluation
setting discards useful annotations.

Goal: Enhance efficiency and FS-CS accuracy, particularly for small
objects, and better utilize annotations during evaluation.

Problem Definition

Table 1. Comparison of FS-CS methods on 2-way 1-shot tasks across all
evaluation settings using COCO-20i[4].

Trainable Original Partially Aug. Fully Aug.
Method

Params. Acc. mioU Acc. mioU Acc. mioU
PANet [5] 23.51 51.30 23.64 51.32 23.78 45.07 23.17
HSNet [6] 2.57 62.43 30.58 62.40 30.66 55.15 29.44
ASNet [2] 1.32 63.05 31.62 63.03 31.64 55.47 30.47
CST*[1] 0.37 /8.70 51.47 /8.87 51.53 71.18 50.76
EMAT 0.09 80.07 52.81 80.25 5282 73.00 51.99

In N-way K-shot FS-CS, a support set provides N classes with K
examples each, and the goal is to identify which support classes
appear in the query image (multi-label classitication) and segment
them (multi-class segmentation). Here, unlike the standard
definition, the guery image may contain: (1) none, (2) a subset, or
(3) all of the support classes.
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Figure 4. Small-object analysis with 1-way 1-shot tasks.

Conclusion

Figure 2. Support set of a 2-way 1-shot task across all evaluation settings.
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® EMAT achieves SOTA performance with ~4x fewer parameters.
® High-resolution tokens boost accuracy on small-objects.

® Qur evaluation settings maximize annotation usage.
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Code: github.com/visinf/emat



